You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
 
 
 
 
 

152 lines
6.4 KiB

# -*- coding: utf-8 -*-
import pandas as pd
import numpy as np
import itertools, json, warnings, time
warnings.filterwarnings('ignore', category=Warning)
import itertools, json
from config import load_common_config
from utils.mysql import get_all_pipe_by_design_plan_id
from utils.dust import group_pipes ,get_pipes_diameter
import os
def minKCal(flows, maxPipe, minSpeed, maxSpeed, minRate):
flows.sort()
minFlow = (np.pi * np.power(maxPipe / 1000.0, 2.0) / 4.0) * 3600.0 * minSpeed - np.sum(flows) * minRate
maxFlow = (np.pi * np.power(maxPipe / 1000.0, 2.0) / 4.0) * 3600.0 * maxSpeed - np.sum(flows) * minRate
flows = flows * (1 - minRate)
minK, maxK = 0, 0
while minFlow > 0.0 and minK < len(flows):
minFlow -= flows[len(flows) - 1 - minK]
if minFlow > 0.0:
minK += 1
while maxFlow > 0.0 and maxK < len(flows):
maxFlow -= flows[maxK]
if maxFlow > 0.0:
maxK += 1
return min(minK + 1, len(flows)), min(maxK + 1, len(flows))
def maxKCal(flows, maxPipe, avgSpeed, minRate):
flows.sort()
mFlow = (np.pi * np.power(maxPipe / 1000.0, 2.0) / 4.0) * 3600.0 * avgSpeed - np.sum(flows) * minRate
mflows = flows * (1 - minRate)
maxK = 0
while mFlow > 0.0 and maxK < len(mflows):
mFlow -= mflows[maxK]
maxK += 1
return min(maxK, len(flows))
def CombCal(fileName, minSpeed, maxSpeed, avgSpeed, minRate,df=None):
if df is None:
df = pd.read_csv(fileName, encoding='utf-8')
df['面积m2'] = (np.pi * np.power(df['管径D(mm)'] / 1000.0, 2.0) / 4.0) * 3600.0
valves = [minRate, 1.0]
maxK = maxKCal(df['风量Q(m3/h)'].values.copy(), df['管径D(mm)'].values[-1], avgSpeed, minRate)
mm_arr, qq_arr = [[minRate], [1.0]], []
m_arr, q_arr = [], []
for ar in mm_arr:
if np.count_nonzero(np.array(ar) == 1.0) == 0:
m_arr.append(ar)
m_flow = np.dot(ar, df['风量Q(m3/h)'][:len(ar)].values)
q_arr.append(m_flow)
else:
m_flow = np.dot(ar, df['风量Q(m3/h)'][:len(ar)].values)
m_Speed = m_flow / df['面积m2'][len(ar)-1]
if m_Speed > minSpeed and m_Speed < maxSpeed:
m_arr.append(ar)
q_arr.append(m_flow)
for k in range(1, len(df)):
mm_arr = m_arr
qq_arr = q_arr
m_arr = []
q_arr = []
m_count = 0
for valve in valves:
for i in range(len(mm_arr)):
ar = mm_arr[i].copy()
ar.append(valve)
m_nonzero = np.count_nonzero(np.array(ar) == 1.0)
if m_nonzero == 0 and len(ar) < maxK:
m_arr.append(ar)
q_arr.append(qq_arr[i] + minRate * df['风量Q(m3/h)'][len(ar)-1])
else:
if m_nonzero <= maxK:
m_flow = qq_arr[i] + valve * df['风量Q(m3/h)'][len(ar)-1]
m_Speed = m_flow / df['面积m2'][len(ar) - 1]
if m_Speed > minSpeed and m_Speed < maxSpeed:
m_arr.append(ar)
q_arr.append(m_flow)
if m_nonzero == maxK:
m_count += 1
# print(f'{k}:{len(m_arr)}:{m_Speed}:{m_count}')
res = {}
for ar in m_arr:
if np.count_nonzero(np.array(ar) == 1.0) > 0:
df['开度'] = ar
df['支管风量'] = df['开度'] * df['风量Q(m3/h)']
df['总管风量'] = df['支管风量'].cumsum()
df['总管风速'] = df['总管风量'] / df['面积m2']
m_Flow = df['总管风量'][len(df) - 1]
m_minSpeed = df['总管风速'][(df['开度'] == 1.0).idxmax():].min()
m_maxSpeed = df['总管风速'][(df['开度'] == 1.0).idxmax():].max()
m_name = df['编号'][df['开度'] == 1.0].values
res[str(set(m_name))] = {
"mainFlow": m_Flow,
"minSpeed": np.round(m_minSpeed, 2),
"maxSpeed": np.round(m_maxSpeed, 2),
"setNames": str(list(m_name))
}
with open('comb.json', 'w', encoding='utf-8') as json_file:
json.dump(res, json_file, indent=2)
def CombSelect(S_Comb,file_path='comb.json'):
_Res = pd.read_json(file_path, encoding='utf-8')
S_Col = []
S_Count = 0
for col in _Res.columns:
if eval(col) & S_Comb == S_Comb:
if S_Count == 0:
S_Count = len(eval(col))
if S_Count + 1 < len(eval(col)):
break
S_Col.append(col)
return _Res[S_Col].T.sort_values(by=['mainFlow', 'minSpeed', 'maxSpeed'], ascending=[True, True, True])
def recommend_v2(design_plan_id,prod_pipe_list,pipe_id,force_update):
output_dir = './calculated/v2'
if not os.path.exists(os.path.join(output_dir, f'{pipe_id}.json')) or force_update:
common_config = load_common_config()
all_pipes = get_all_pipe_by_design_plan_id(design_plan_id)
groups = group_pipes(all_pipes)
for parentId, pipes in groups.items():
pipes = get_pipes_diameter(pipes,design_plan_id)
data = []
for pipe in pipes:
data.append([float(pipe['flow']),float(pipe['diameter']), pipe['id']])
# flow(风量Q(m3/h)) diameter(管径D(mm)) id(编号)
df = pd.DataFrame(data, columns=['风量Q(m3/h)', '管径D(mm)', '编号'])
CombCal(fileName='',minSpeed=common_config['minSpeed'], maxSpeed=common_config['maxSpeed'], minRate=common_config['minRate'],avgSpeed=common_config['avgSpeed'],df=df)
# 复制comb.json文件到./calculated/<parentId>.json
with open('comb.json', 'r', encoding='utf-8') as json_file:
res = json.load(json_file)
os.makedirs(output_dir, exist_ok=True) # 如果目录不存在则创建
with open(f'{output_dir}/{parentId}.json', 'w', encoding='utf-8') as json_file:
json.dump(res, json_file, indent=2)
# 读取./calculated/<pipe_id>.json文件
with open(f'./{output_dir}/{pipe_id}.json', 'r', encoding='utf-8') as json_file:
res = json.load(json_file)
ids_set = {pipe['id'] for index, pipe in enumerate(prod_pipe_list) if pipe['valveOpening'] == 100}
df = CombSelect(ids_set,file_path=f'./{output_dir}/{pipe_id}.json')
# 把df转换为json格式
df = df.to_dict(orient='records')
return df